(本小题满分12分)
如图某河段的两岸可视为平行,为了测量该河段的宽度,在河段的一岸边选取两点A、B,观察对岸的点C,测得,
,且
米。
(1)求;
(2)求该河段的宽度。
已知
(I)求的值;
(II)求;
(III)求证:
已知两点M、N分别在直线
与直线
上运动,且|MN|=2.动点P满足
(O为坐标原点),点P的轨迹记为曲线C.
(I)求曲线C的方程;
(II)过点(0,1)作直线l与曲线C交于不同的两点A、B.若对任意,都有∠AOB为锐角,求直线l的斜率k的取值范围.
如图,四棱锥P—ABCD的底面为矩形,PA=AD=1,PA⊥面ABCD,E是AB的中点,F为PC上一点,且EF//面PAD。
(I)证明:F为PC的中点;
(II)若二面角C—PD—E的平面角的余弦值为求直线ED与平面PCD所成的角
已知函数
(I)求的单调区间;
(II)若函数的图象上存在一点
为切点的切线的斜率
成立,求实数a的最大值