已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.如图1,当点D在边BC上时,
①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;
如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.
如图,直线AB∥CD,EF⊥CD于F,如果∠GEF=250,求∠1的度数(6分)
圆规和直尺作图:在Rt⊿ABC中,∠ACB=90°,∠CAB=30°,用两种方法把它分成两个三角形,要求其中一个是等腰三角形,并标明等腰三角形各角的度数(保留作图痕迹,不要求写作法和说明)。(6分)
如图是由7块小立方体摆放而成的几何体,请画出它的三视图.(6分)
(本小题12分)如图,直线交
轴于A点,交
轴于B点,过A、B两点的抛物线交
轴于另一点C(3,0).
⑴ 求抛物线的解析式;
⑵ 在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,
请说明理由.
(本小题10分)某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满。当每个房间每天的定价每增加10元时,就会有一个房间空闲。对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用。
设每个房间每天的定价增加元,求:
(1)房间每天的入住量
(间)关于
(元)的函数关系式;
(2)该宾馆每天的房间收费
(元)关于
(元)的函数关系式;
(3)该宾馆客房部每天的利润
(元)关于
(元)的函数关系式;当每个房间的定价为每天多少元时,
有最大值?最大值是多少
?