如图,在矩形ABCD中,AB=12cm,BC=8cm,点E,F,G分别从点A,B,C三点同时出发,沿矩形的边按逆时针方向移动,点E,G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm2).当t=1秒时,S的值是多少?
写出S和t之间的函数解析式,并指出自变量t的取值范围.
若点F在矩形的边BC上移动,当t为何值时,以点E,B,F为顶点的三角形与以F,C,G为顶点的三角形相似?请说明理由.
已知二次函数(
是常数).
(1)求证:不论为何值,该函数的图象与x轴没有公共点;
(2)把该函数的图象沿轴向下平移多少个单位长度后,得到的函数的图象与
轴只有一个公共点?
如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC
(2)若AB=4,AD=3,AE=3,求AF的长.
某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为3万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.4万元,设可变成本平均每年增长的百分率为x.
(1)用含x的代数式表示第3年的可变成本为 万元.
(2)如果该养殖户第3年的养殖成本为6.456万元,求可变成本平均每年增长的百分率?
已知抛物线
(1)该抛物线的对称轴是 ,顶点坐标 ;
(2)选取适当的数据填入下表,并在直角坐标系内描点画出该抛物线的图象;
x |
… |
… |
|||||
y |
… |
… |
(3)若该抛物线上两点A(x1,y1),B(x2,y2)的横坐标满足x1>x2>1,试比较y1与y2的大小.
从全校1200名学生中随机选取一部分学生进行调查,调查情况:A:上网时间小时;B:1小时<上网时间
小时;C:4小时<上网时间
小时;D:上网时间>7小时.统计结果制成了如图统计图:
(1)参加调查的学生有 人;
(2)请将条形统计图补全;
(3)请估计全校上网不超过7小时的学生人数.