推理证明:如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D过D作DE⊥BC,垂足为E,连结OE,CD=,∠ACB=30°.(1)求证:DE是⊙O的切线;(2)分别求AB,OE的长;(3)填空:如果以点E为圆心,r为半径的圆上总存在不同的两点到点O的距离为1,则r的取值范围为 .
分解因式:
解不等式组:,并在数轴上表示解集.
计算:
在平面直角坐标系中,抛物线y=ax2+bx+2的图象过和,与轴交于点,与轴交于另一点,点是原点关于点的对称点,连结、,设点。 (1)求抛物线的解析式; (2)连结、,①求的值;②将绕点旋转,在旋转过程中如图(2),线段和的比值会变吗?请说明理由; (3)设点是直线上方的抛物线上一点,连结,以为边作图示一侧的正方形,随着点的运动,正方形的大小,位置也随之改变,当顶点或恰好落在轴上时,直接写出对应点的坐标。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号