如图所示的直角坐标系中,在
,
的区域有一对平行金属板M和N,其中N板位于
轴上,M、N板加有如图所示电压,平行金属板右侧存在沿y轴负向与平行金属板等宽度的匀强电场,场强大小为E,在
的区域存在垂直纸面的矩形有界磁场,其下边界和左边界分别与
、
轴重合。
时刻一质量为
,电量为
的带电微粒沿着平金属板的轴线
以初速度
向右开始运动,恰从M板右边缘的P点沿
轴正向进入平行金属板右侧电场,经过一段时间后以
的速度经Q点进入磁场,Q点为
与y轴的交点,再经磁场偏转带电微粒恰好从坐标原点
沿
轴负向返回电场,不计带电微粒的重力。求:
(1)平行金属板M、N间的距离及右侧电场的宽度
;
(2)平行金属板上所加电压满足的条件;
(3)矩形磁场区域的最小面积。
某一水电站发电机组设计为:水以v1=3m/s的速度流入水轮机后以v2=1m/s的速度流出,流出水位比流入水位低h=9.6m,水流量为Q=10m3/s.水轮机效率为η1 =75%,发电机效率为η2=80%,重力加速度g=10m/s2,水的密度ρ=103kg/m3.试问:
(1)发电机的输出功率是多少?
(2)如果发电机输出电压为240V,用户所需电压为220V,输电线路中能量损耗为5%,输电线的电阻共为12Ω,那么所需用升压变压器、降压变压器的原副线圈的匝数比分别是多少?
如图所示的实线是t=0时刻的波形图像,虚线是经过0.2 s时的波形图像.求:
(1)这列波可能的波速;
(2)若波速是35 m/s,求波的传播方向.
在双人花样滑冰比赛中,有时会看到被男运动员拉着的女运动员离开地面在空中做圆锥摆运动的精彩场面,质量为m的女运动员做圆锥摆运动时和水平冰面的夹角为θ,转动过程中女运动员的重心做匀速圆周运动的半径为r,重力加速度为g,求:
(1)该女运动员受到拉力的大小.
(2)该女运动员做圆锥摆运动的周期.
如图是利用传送带装运煤块的示意图.其中,传送带足够长,倾角θ=37°,煤块与传送带间的动摩擦因数μ=0.8,传送带的主动轮和从动轮半径相等,主动轮轴顶端与运煤车底板间的竖直高度H=1.8m,与运煤车车箱中心的水平距离x=1.2m.现在传送带底端由静止释放一些煤块(可视为质点),煤块在传送带的作用下先做匀加速直线运动,后与传送带一起做匀速运动,到达主动轮时随轮一起匀速转动.使煤块在轮的最高点恰好水平抛出并落在车箱中心,取g=10m/s2,sin37°=0.6,cos37°=0.8,求:
(1)传送带匀速运动的速度v
(2)主动轮和从动轮的半径R;
(3)煤块在传送带上由静止开始加速至与传送带速度相同所经过的时间t.
如图所示,水平直线MN下方有竖直向上的匀强电场,现将一重力不计、比荷=106 C/kg的正电荷置于电场中的O点由静止释放,经过
×10-5 s后,电荷以v0=1.5×104 m/s的速度通过MN进入其上方的匀强磁场,磁场与纸面垂直,磁感应强度B按图8-12b所示规律周期性变化(图b中磁场以垂直纸面向外为正,以电荷第一次通过MN时为t=0时刻).求:
(1)匀强电场的电场强度E的大小;
(2)图b中t=×10-5 s时刻电荷与O点的水平距离;
(3)如果在O点右方d=68 cm处有一垂直于MN的足够大的挡板,求电荷从O点出发运动到挡板所需的时间.(sin 37°=0.60,cos 37°=0.80)