△ABC在平面直角坐标系中的位置如图所示:
①作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;
②将△ABC向右平移8个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;
③观察△A1B1C1与△A2B2C2它们是否关于某直成对称?若是,请在图上画出这条对称轴.
某学校设立学生奖学金时规定:综合成绩最高者得一等奖,综合成绩包括体育成绩、德育成绩、学习成绩三项,这三项成绩分别按1:3:6的比例计入综合成绩.小明、小亮两位同学入围测评,他们的体育成绩、德育成绩、学习成绩如下表.请你通过计算他们的综合成绩,判断谁能拿到一等奖?
体育成绩 |
德育成绩 |
学习成绩 |
|
小明 |
96 |
94 |
90 |
小亮 |
90 |
93 |
92 |
如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(﹣12,16),矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x轴分别交于点D、F.
(1)直接写出线段BO的长;
(2)求直线BD解析式;
(3)若点N在直线BD上,在x轴上是否存在点M,使以M、N、E、D为顶点的四边形是平行四边形?若存在,请求出一个满足条件的点M的坐标;若不存在,请说明理由.
请阅读下列材料:
问题:如图①,将菱形ABCD和菱形BEFG拼接在一起,使得点A,B,E在同一条直线上,点G在BC边上,P是线段DF的中点,连接PG,PC.若∠ABC=120°,试探究PG与PC的位置关系及∠PCG的大小.小明同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小明的思路,探究并解决下列问题:
(1)直接写出上面问题中线段PG与PC的位置关系及∠PCG的大小;
(2)将图①中的菱形BEFG绕点B顺时针旋转,使点E恰好落在CB的延长线上,原问题中的其他条件不变(如图②).你在(1)中得到的两个结论是否仍成立?写出你的猜想并加以证明.
如图,在平面直角坐标系xOy中,直线y=﹣x+b与x轴交于点A,与双曲线y=﹣
在第二象限内交于点B(﹣3,a).
(1)求a和b的值;
(2)过点B作直线l平行x轴交y轴于点C,求△ABC的面积.
如图,矩形ABCD中,对角线AC的垂直平分线交AD边于点E,交BC边于点F,分别连结AF和CE.
(1)根据题意将图形补画完整(要求尺规作图,保留作图痕迹,不写作法);
(2)试判断四边形AFCE的形状,并证明你的判断.