设函数,
(1)若是奇函数,求a、b满足的条件;
(2)若,求
在区间[0,2]上的最大值
;
(3)求的单调区间.
已知:如图,等腰直角三角形的直角边
,沿其中位线
将平面
折起,使平面
⊥平面
,得到四棱锥
,设
、
、
、
的中点分别为
、
、
、
.
(1)求证:、
、
、
四点共面;
(2)求证:平面平面
;
(3)求异面直线与
所成的角.
如图,已知圆,点
.
(1)求圆心在直线上,经过点
,且与圆
相外切的圆
的方程;
(2)若过点的直线
与圆
交于
两点,且圆弧
恰为圆
周长的
,求直线
的方程.
如图,长方体中,
,点
为
的中点.
(1)求证:直线平面
;
(2)求证:平面平面
;
(3)求与平面
所成的角大小.
设全集为,集合
,
.
(1)求如图阴影部分表示的集合;
(2)已知,若
,求实数
的取值范围.
已知直线经过直线
与直线
的交点
,且垂直于直线
.
(1)求直线的方程;
(2)求直线关于原点
对称的直线方程.