设函数,其中
为自然对数的底数.
(1)求函数的单调区间;
(2)记曲线在点
(其中
)处的切线为
,
与
轴、
轴所围成的三角形面积为
,求
的最大值.
(本题满分14分).如图,在棱长为4的正方体ABCD-A1B1C1D1中,E是D1C1上的一点且EC1=3D1 E,
(1) 求直线BE与平面ABCD所成角的正切值;
(2)求异面直线BE与CD所成角的余弦值.
(本题满分12分).如图,在三棱柱ABC-中,点E,D分别是
与BC的中点.
求证:平面EB//平面AD
.
(本题满分12分).画出右边水平放置的几何体的三视图.
已知离心率为的椭圆
过点
,
是坐
标原点.
(1)求椭圆的方程;
(2)已知点为椭圆
上相异两点,且
,判定直线
与圆
的
位置关系,并证明你的结论.
已知函数在
处取得极值
.
(1)求的值;
(2)若关于的方程
在区间
上有实根,求实数
的取值范围.