某批发商以每件50元的价格购进800件衬衣,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计可售出200件,批发商为增加销售,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的衬衣一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.填写下表
时间 |
第一个月 |
第二个月 |
清仓时 |
单价(元) |
80 |
40 |
|
销量(件) |
200 |
|
|
如果批发商销售这批衬衣后获利9000元,求第二个月的单价是多少?
如图,在□ABCD中,E、F为BC上的两点,且BE=CF,AF=DE.
求证:(1)△ABF≌△DCE;
(2)四边形ABCD是矩形.
解方程:
计算
(1)
(2),其中a满足
如图1所示,将一个边长为2的正方形和一个长为2、宽为1的长方形
拼在一起,构成一个大的长方形
.现将小长方形
绕点
顺时针旋转至
,旋转角为
.
(1)当点恰好落在
边上时,求旋转角
的值;
(2)如图2,为
的中点,且0°<
<90°,求证:
;
(3)先将小长方形绕点
顺时针旋转,使
与
全等(0°<
<180°),再将此时的小长方形
沿CD边竖直向上平移t个单位,设移动后小长方形边直线
与BC交于点H,若DH∥FC,求上述运动变换过程中
和t的值.
函数和
的图象关于y轴对称,我们定义函数
和
相互为“影像”函数。
类似地,如果函数和
的图象关于y轴对称,那么我们定义函数
和
互为“影像”函数。
(1)请写出函数的“影像”函数:;
(2)函数的“影像”函数是;
(3)如果,一条直线与一对“影像”函数和
的图象分别交于点A、B、C(点A、B在第一象限),如果CB: BA=1:2,点C在函数
的“影像”函数上的对应点的横坐标是1,求点B的坐标。