某企业获准生产“上海世博会”纪念徽章,若生产A种款式的纪念徽章125件,B种款式的纪念徽章150件,需生产成本700元;若生产A种款式的纪念徽章100件,B种款式的纪念徽章450件,需生产成本1550元.已知A、B两种纪念徽章的市场零售价分别为2.3元,3.5元求每个A、B两种款式的纪念徽章的成本是多少元?
随着上海世博会的开幕,为了满足市场的需要,该企业现在每天要生产A、B两种款式的纪念徽章共4500件,若要求每天投入成本不超过10000元,并且每天生产的B种款式的纪念徽章不少于A种款式纪念徽章的
.那么每天最多获利多少元,最少获利多少元?获利最多的方案如何设计?
(5分)
王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线,其中
(m)是球的飞行高度,
(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.
(1)请求出球飞行的最大水平距离.
(2)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.
(5分)抛物线的顶点坐标为(1,-4),图象又经过点(2,-3).
求(1)抛物线
的解析式.
(2)求抛物线
与一次函数y=3x+11的交点坐标.
(3)求不等式
>3x+11的解集(直接写出答案).
如图,在△中,∠
=90°,sin
=
,
=15,求△
的周长和tanB的值.
(本题满分12分)在平面直角坐标系中,抛物线交轴于
两点,交
轴于点
,已知抛物线的对称轴为
.
![]() |
⑴求这个抛物线的解析式;
⑵在抛物线的对称轴上是否存在一点
,使点
到A、C两点间的距离之和最大.若存在,求出点
的坐标;若不存在,请说明理由.
(3)如果在
轴上方平行于
轴的一条直线交抛物线于
两点,以
为直径作圆恰好与
轴相切,求此圆的直径.