游客
题文

某花店每天以每枝 5 元的价格从农场购进若干枝玫瑰花,然后以每枝 10 元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进 16 枝玫瑰花,求当天的利润 y (单位:元)关于当天需求量 n (单位:枝, n N )的函数解析式.
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

image.png

以100天记录的各需求量的频率作为各需求量发生的概率.
(i)若花店一天购进 16 枝玫瑰花, X 表示当天的利润(单位:元),求 X 的分布列,数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.

科目 数学   题型 解答题   难度 较易
知识点: 复合三角函数
登录免费查看答案和解析
相关试题

已知函数
(Ⅰ)函数的最小正周期是多少?
(Ⅱ)函数的单调增区间是什么?
(Ⅲ)函数的图像可由函数的图像如何变换而得到?

中,若,且为锐角,求角

已知
求(Ⅰ)的值;(Ⅱ)的值.

某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如下图所示.

(Ⅰ)下表是年龄的频数分布表,求正整数a,b的值;

区间
[25,30)
[30,35)
[35,40)
[40,45)
[45,50]
人数
50
50

150

(Ⅱ) 现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?
(III)在(Ⅱ)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB, PC的中点

(1)求证:EF∥平面PAD;
(2)求证:EF⊥CD;
(3)若ÐPDA=45°,求EF与平面ABCD所成的角的大小.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号