已知函数,
(1)当时,解不等式
;
(2)若存在,使得
成立,求实数
的取值范围.
已知函数
(1)求函数在点
处的切线方程;
(2)求函数单调递增区间;
(3)若存在,使得
是自然对数的底数),求实数
的取值范围.
已知向量.
(1)若,且
,求
的值;
(2)定义函数,求函数
的单调递减区间;并求当
时,函数
的值域.
如图,在正三棱柱ABC-A1B1C1中,A1A=AC,D,E,F分别为线段AC,A1A,C1B的中点.
(1)证明:EF∥平面ABC;
(2)证明:C1E⊥平面BDE.
已知实数
满足
, 其中
;
实数
满足
.
(1)若且
为真, 求实数
的取值范围;
(2)若是
的必要不充分条件, 求实数
的取值范围.
(本题13分)已知以椭圆C:的短轴为直径,以原点为圆心的圆与直线
相切,且椭圆椭圆C的离心率为
.
(1)求椭圆C的方程;
(2)若是椭圆C上的两点,且
轴,
,连接直线
交椭圆C于另一点
(不同于
点),试分析直线
与
轴是否相交于定点?若是,求出定点坐标;若不是,请加以证明.