(本小题满分12分)甲、乙等名同学参加某高校的自主招生面试,已知采用抽签的方式随机确定各考生的面试顺序(序号为
).
(Ⅰ)求甲、乙两考生的面试序号至少有一个为奇数的概率;
(Ⅱ)记在甲、乙两考生之间参加面试的考生人数为,求随机变量
的分布列与期望.
(本小题满分14分)如图,在直三棱柱ABC—A1B1C1中,AB=AC,点D是BC的中点.
(1)求证:A1B//平面ADC1;
(2)如果点E是B1C1的中点,求证:平面平面BCC1B1.
(本小题满分14分)已知△ABC的三个内角A、B、C所对的边分别为a、b、c,向量m=(sinA,1),n=(1,-cosA),且m⊥n.
(1)求角A;
(2)若b+c=a,求sin(B+
)的值.
已知函数(
是自然对数的底数)
(1)求的最小值;
(2)不等式的解集为P,若
求实数
的取值范围;
(3)已知,是否存在等差数列
和首项为
公比大于0的等比数列
,使数列
的前n项和等于
如图,椭圆长轴端点为,
为椭圆中心,
为椭圆的右焦点,
且,
.(1)求椭圆的标准方程;
(2)记椭圆的上顶点为,直线
交椭圆于
两点,问:是否存在直线
,使点
恰为
的垂心?若存在,求出直线
的方程;若不存在,请说明理由.
如图,在三棱锥中,
底面ABC
,点
、
分别在棱
上,且
http://wx.jtyjy.com/
(Ⅰ)求证:平面
;
(Ⅱ)当为
的中点时,求
与平面
所成角的大小的余弦值;
(Ⅲ)是否存在点,使得二面角
为直二面角?并说明理由.