游客
题文

如图,在直角坐标系中,⊙O的圆心O在坐标原点,直径AB=8,点P是直径AB上的一个动点(点P不与A、B两点重合),过点P的直线PQ的解析式为,当直线PQ交y轴于Q,交⊙O于C、D两点时,过点C作CE垂直于x轴交⊙O于点E,过点E作EG垂直于y轴,垂足为G,过点C作CF垂直于y轴,垂足为F,连接DE.

(1)点P在运动过程中,∠CPB=        ;
(2)当m=3时,试求矩形CEGF的面积;
(3)当P在运动过程中,探索的值是否会发生变化?如果发生变化,请你说明理由;如果不发生变化,请你求出这个不变的值;
(4)如果点P在射线AB上运动,当△PDE的面积为4时,请你求出CD的长度

科目 数学   题型 解答题   难度 较难
知识点: 圆幂定理 解直角三角形
登录免费查看答案和解析
相关试题

为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式.
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?

今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.
对 雾霾了解程度的统计表:

对雾霾的了解程度
百分比
A.非常了解
5%
B.比较了解
m
C.基本了解
45%
D.不了解
n


请结合统计图表,回答下列问题.
(1)本次参与调查的学生共有  人,m=  ,n=  
(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是多少度;
(3)请补全条形统计图;

已知∠MAN,AC平分∠MAN.
(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,我们可得结论:AB+AD=AC;

在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则上面的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;

【解】
(2)在图3中:(只要填空,不需要证明).

①若∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=AC;
②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=AC(用含α的三角函数表示)。

交通安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.

(1)求AB的长(精确到0.1米,参考数据:);
(2)已知本路段对汽车限速为40千米/小时,若测得某辆汽车从A到B用时为2秒,这辆汽车是否超速?说明理由.

已知关于x的一元二次方程
(1)求证:方程有两个不相等的实数根;
(2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为5。当△ABC是等腰三角形时,求k的值。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号