如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动。设动点运动时间为t秒。
(1)求AD的长.
(2)当△PDC的面积为15平方厘米时,求的值.
(3)动点M从点C出发以每秒2厘米的速度在线段CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动。是否存在t,使得S△PMD=S△ABC?若存在,请求出t的值;若不存在,请说明理由.
如图,CD=BE,DG⊥BC,EF⊥BC,垂足分别为G,F,且DG=EF。
(1)与
全等吗?请说明理由;
(2)OB=OC吗?请说明理由;
(3)若∠B=30°,的形状是
请在下图方格中任画出两个以AB腰的等腰三角形ABC。(要求:一个为锐角三角形,一个为钝角三角形)
解下列不等式及不等式组:(本题共8分,每题3分,数轴2分)
(1) 2-4x<0 (2)解不等式组,并把解集在数轴上表示出来。
如图,是半径为
的
上的定点,动点
从
出发,以
的速度沿圆周逆时针运动,当点
回到
地立即停止运动.
(1)如果,求点
运动的时间;
(2)如果点是
延长线上的一点,
,那么当点
运动的时间为
时,判断直线
与
的位置关系,并说明理由.
为实现区域教育均衡发展,我市计划对某县、
两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所
类学校和两所
类学校共需资金230万元;改造两所
类学校和一所
类学校共需资金205万元.
(1)改造一所类学校和一所
类学校所需的资金分别是多少万元?
(2)若该县的类学校不超过5所,则
类学校至少有多少所?
(3)我市计划今年对该县、
两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到
、
两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?