如图,从顶点A出发,沿着边长为1的正方形的四个顶点依次跳舞,舞步长为1.第一次顺时针移动1步,第二次逆时针移动2步,第三次顺时针移动3步,……以此类推.
(1)移动4次后到达何处?(直接给出答案)
(2)移动2012次后到达何处?
如图,菱形 的对角线 与 相交于点 ,点 、 分别为边 、 的中点,连接 、 、 .求证:四边形 是菱形.
如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧, BM^直线a于点M,CN^直线a于点N,连接PM、PN;(1) 延长MP交CN于点E(如图2)。j求证:△BPM@△CPE;k求证:PM = PN;
(2) 若直线a绕点A旋转到图3的位置时,点B、P在直线a的同侧,其它条件不变。此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;
(3) 若直线a绕点A旋转到与BC边平行的位置时,其它条件不变。请直接判断四边形MBCN
的形状及此时PM=PN还成立吗?不必说明理由。
某公司有甲、乙两个绿色农产品种植基地,在收获期这两个基地当天收获的某种农产品, 一部份存入仓库,另一部分运往外地销售。根据经验,该农产品在收获过程中两个种植基地累积总产量y (吨)与收获天数x (天)满足函数关系y=2x+3 (1£x£10且x为整数)。该农产品在收获过程中甲、乙两基地的累积产量分别占两基地累积总产量的百分比和甲、乙两基地累积存入仓库的量分别占甲、乙两基地的累积产量的百分比如下表:
![]() |
该基地的累积产量占 两基地累积总产量的百分比 |
该基地累积存入仓库的量占 该基地的累积产量的百分比 |
![]() |
||
种植基地 |
||
甲 |
60% |
85% |
乙 |
40% |
22.5% |
(1) 请用含y的代数式分别表示在收获过程中甲、乙两个基地累积存入仓库的量;
(2) 设在收获过程中甲、乙两基地累积存入仓库的该种农产品的总量为p(吨),请求出p(吨)与收获天数x(天)的函数关系式;
(3) 在(2)基础上,若仓库内原有该农产品42.6吨,为满足本地市场需求,在此收获期开始 的同时,每天从仓库调出一部分该种农产品投入本地市场,若在本地市场售出的该种农产品总量m(吨)与收获天数x(天)满足函数关系m= -x2+13.2x-1.6 (1£x£10且x为整数)。
问在此收获期内连续销售几天,该农产品库存量达到最低值?最低库存量是多少吨?
阅读下列材料,并解决后面的问题:
★阅读材料:
(1) 等高线概念:在地图上,我们把地面上海拔高度相同的点连成的闭合曲线叫等高线。
例如,如图1,把海拔高度是50米、100米、150米的点分别连接起来,就分别形成50米、100米、150米三条等高线。
(2) 利用等高线地形图求坡度的步骤如下:(如图2)
步骤一:根据两点A、B所在的等高线地形图,分别读出点A、B的高度;A、B两点
的铅直距离=点A、B的高度差;
步骤二:量出AB在等高线地形图上的距离为d个单位,若等高线地形图的比例尺为
1:n,则A、B两点的水平距离=dn;
步骤三:AB的坡度==
;
★请按照下列求解过程完成填空,并把所得结果直接写在答题卡上。
某中学学生小明和小丁生活在山城,如图3(示意图),小明每天上学从家A经过B沿着公路AB、BP到学校P,小丁每天上学从家C沿着公路CP到学校P。该山城等高线地形图的比例尺为1:50000,在等高线地形图上量得AB=1.8厘米,BP=3.6厘米,CP=4.2厘米。
(1) 分别求出AB、BP、CP的坡度(同一段路中间坡度的微小变化忽略不计);
(2) 若他们早晨7点同时步行从家出发,中途不停留,谁先到学校?(假设当坡度在到
之间时,小明和小丁步行的平均速度均约为1.3米/秒;当坡度在
到
之间时,小明和小丁步行的平均速度均约为1米/秒)
解:(1) AB的水平距离=1.8´50000=90000(厘米)=900(米),AB的坡度==
;
BP的水平距离=3.6´50000=180000(厘米)=1800(米),BP的坡度==
;
CP的水平距离=4.2´50000=210000(厘米)=2100(米),CP的坡度="" j;
(2) 因为<
<
,所以小明在路段AB、BP上步行的平均速度均约为1.3米/秒。 因为k,所以小丁在路段CP上步行的平均速度约为l米/秒,斜坡 AB的距离=
»906(米),斜坡BP的距离=
»1811(米),斜 坡CP的距离=
»2121(米),所以小明从家到学校的时间=
=2090(秒)。
小丁从家到学校的时间约为m秒。因此,n先到学校。
如图,AB是8O的直径,点C在BA的延长线上,直线CD与
8O相切于点D,弦DF^AB于点E,线段CD=10,连接BD;
(1) 求证:ÐCDE=2ÐB;
(2) 若BD:AB=:2,求8O的半径及DF的长。