某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机进货量的一半.电视机与洗衣机的进价和售价如下表:
类 别 |
电视机 |
洗衣机 |
进价(元/台) |
1 800 |
1 500 |
售价(元/台) |
2 000 |
1 600 |
计划购进电视机和洗衣机共 100 台,商店最多可筹集资金161 800 元.
(1)请你帮助商店算一算有多少种进货方案(不考虑除进价之外的其他费用);
(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得的利润最多?并求出最大的利润(利润=售价-进价).
已知,如图四,△ABC中,BD是AC边上的中线,DB⊥BC于B,且∠ABC=120°,求证:AB=2BC.
如图所示,已知AC∥BD,EA,EB分别平分∠CAB和∠DBA,CD过E点.求证:AB=AC+BD.
如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=60°,求∠DAC的度数.
在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-3,0),B(-3,-4),C(-1,-4).
(1)求△ABC的面积;
(2)在图中作出△ABC关于轴对称的图形△DEF,点A、B、C的对称点分别为D、E、F,并写出D、E、F的坐标.
如图,AC=DC,BC=EC,∠ACD = ∠BCE.求证:∠A=∠D.