某港口的水深(米)是时间
(
,单位:小时)的函数,下面是每天时间与水深的关系表:
![]() |
0 |
3 |
6 |
9 |
12 |
15 |
18 |
21 |
24 |
![]() |
10 |
13 |
9.9 |
7 |
10 |
13 |
10.1 |
7 |
10 |
经过长期观测, 可近似的看成是函数
,(本小题满分14分)
(1)根据以上数据,求出的解析式。
(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?
已知在⊿ABC中,A(3,2)、B(-1,5),C点在直线上,若⊿ABC的面积为10,求C点的坐标.
(本小题满分12分)
在直三棱柱ABC—A1B1C1中,∠ABC=90°,BC=CC1,M、N分别为BB1、
A1C1的中点.
(1)求证:CB1⊥平面ABC1;
(2)求证:MN//平面ABC1.
求经过两直线和
的交点且与直线
垂直的直线方程.
已知函数f(x)=4x3-3x2cosθ+,其中x∈R,θ为参数,且0≤θ≤2π.
(1)当时,判断函数f(x)是否有极值;
(2)要使函数f(x)的极小值大于零,求参数θ的取值范围;
(3)若对(2)中所求的取值范围内的任意参数θ,函数f(x)在区间(2A-1,A)内都是增函数,求实数A的取值范围.
已知
(1)若的最小值记为
,求
的解析式.
(2)是否存在实数,
同时满足以下条件:①
;②当
的定义域为[
,
]时,值域为[
,
];若存在,求出
,
的值;若不存在,说明理由.