高三年级班参加高考体检,
个班中,任选
个班先参加视力检查. (I)求这
个班中恰有
个班班级序号是偶数的概率;
(II)设为这
个班中两班序号相邻的组数(例如:若选出的班为
班,则有两组相邻的,
班和
班,此时
的值是
).求随机变量
的分布列及其数学期望
.
(本小题满分12分)如图,在四棱柱中,侧面
⊥底面
,
,底面
为直角梯形,其中
,O为
中点.
(Ⅰ)求证:平面
;
(Ⅱ)求锐二面角A—C1D1—C的余弦值.
(本小题满分12分)
设数列的前
项和为
,且
;数列
为等差数列,且
.
(1)求数列的通项公式;
(2)若(
=1,2,3…),
为数列
的前
项和.求
.
(本小题满分12分)已知
(Ⅰ)求函数的单调增区间
(Ⅱ)在中,
分别是角
的对边,且
,求
的面积.
如图,已知椭圆C的中心在原点O,焦点在轴上,长轴长是短轴
长的2倍,且经过点M. 平行于OM的直线
在
轴上的截距为
并交椭
圆C于A、B两个不同点.
(1)求椭圆C的标准方程;
(2)求m的取值范围;
(3)求证:直线MA、MB与x轴始终围成一个等腰三角形.
设定点M,动点N在圆
上运动,线段MN的
中点为点P.
(1)求MN的中点P的轨迹方程;
(2)直线与点P的轨迹相切,且
在
轴.
轴上的截距相等,求直线
的方程.