某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.
(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(Ⅱ)从频率分布直方图中,估计本次考试的平均分;
(Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,在[70,100]记1分,用X表示抽取结束后的总记分,求X的分布列和数学期望.
如图,已知ABC中的两条角平分线
和
相交于
,
B=60
,
在
上,且
。
(1)证明:四点共圆;
(2)证明:CE平分DEF。
设、
分别是椭圆
的左、右焦点.
(Ⅰ)若P是该椭圆上的一个动点,求的最大值和最小值;
(Ⅱ)是否存在过点A(5,0)的直线l与椭圆交于不同的两点C、D,使得|F2C|=|F2D|?若存在,求直线l的方程;若不存在,请说明理由.
设双曲线C:的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点P、Q。
(Ⅰ)若直线m与x轴正半轴的交点为T,且,求点T的坐标;
(Ⅱ)求直线A1P与直线A2Q的交点M的轨迹E的方程;
(Ⅲ)过点F(1,0)作直线l与(Ⅱ)中的轨迹E交于不同的两点A、B,设,若
(T为(Ⅰ)中的点)的取值范围。
在平面直角坐标系xOy中,已知点A(-1, 0)、B(1, 0), 动点C满足条件:△ABC的周长为2+2.记动点C的轨迹为曲线W.
(Ⅰ)求W的方程;
(Ⅱ)经过点(0, )且斜率为k的直线l与曲线W有两个不同的交点P和Q,
求k的取值范围;
(Ⅲ)已知点M(,0),N(0, 1),在(Ⅱ)的条件下,是否存在常数k,使得向量与
共线?如果存在,求出k的值;如果不存在,请说明理由.
在平面直角坐标系中,过定点
作直线与抛物线
(
)相交于
两点.
(I)若点是点
关于坐标原点
的对称点,求
面积的最小值;
(II)是否存在垂直于轴的直线
,使得
被以
为直径的圆截得的弦长恒为定值?若存在,求出
的方程;若不存在,说明理由.