已知是公差为d的等差数列,
是公比为q的等比数列
(Ⅰ)若 ,是否存在
,有
?请说明理由;
(Ⅱ)若(a、q为常数,且aq
0)对任意m存在k,有
,试求a、q满足的充要条件;
(Ⅲ)若试确定所有的p,使数列
中存在某个连续p项的和式数列中
的一项,请证明.
(本小题满分12分)
新能源汽车是指除汽油、柴油发动机之外所有其它能源汽车.包括燃料电池汽车、混合动力汽车、氢能源动力汽车和太阳能汽车等.其废气排放量比较低.为了配合我国“节能减排”战略,某汽车厂决定转型生产新能源汽车中的燃料电池汽车、混合动力和氢能源动力三类轿车,每类轿车均有标准型和豪华型两种型号,某月的产量如下表(单位:辆):
燃料电池轿车 |
混合动力轿车 |
氢能源动力轿车 |
|
标准型 |
100 |
200 |
![]() |
豪华型 |
200 |
300 |
500 |
按类型分层抽样的方法在这个月生产的轿车中抽取100辆,其中有燃料电池轿车20辆.
(I) 求的值.
(II) 用分层抽样的方法在氢能源动力轿车中抽取一个容量为7的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆标准型轿车的概率;
(Ⅲ) 用随机抽样的方法从混合动力标准型轿车中抽取10辆,经检测它们的得分如下:
9.3, 8.7, 9.1, 9.5, 8.8, 9.4, 9.0, 8.2,9.6, 8.4.
把这10辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.4的概率.
(本小题满分14分)
已知向量,
(1)若,
,求
和
的值;
(2)若,求
的值.
(本小题满分14分)
已知二次函数,且不等式
的解集为
。
(Ⅰ) 若方程有两个相等的实根,求
的解析式;
(Ⅱ) 若函数的最小值不大于
,求实数
的取值范围。
(Ⅲ) 如何取值时,函数
(
)存在零点,并求出零点.
(本小题满分14分)
已知等差数列的首项为a,公差为b;等比数列
的首项为b,公比为a,其中a,
,且
.
(Ⅰ)a的值;
(Ⅱ) 若对于任意,总存在
,使
,求b的值;
(Ⅲ) 在(Ⅱ)中,记是所有
中满足
,
的项从小到大依次组成的数列,又记
为
的前n项和,
是
的前n项和,求证:
≥
.
已知椭圆G的中心在坐标原点,与双曲线有相同的焦点,且过点
.
(Ⅰ) 求椭圆G的方程;
(Ⅱ) 设、
是椭圆G的左焦点和右焦点,过
的直线
与椭圆G相交于A、B两点,请问
的内切圆M的面积是否存在最大值?若存在,求出这个最大值及直线
的方程,若不存在,请说明理由.