发射地球同步卫星时,可认为先将卫星发射至距地面高度为h1的圆形轨道上,在卫星经过A点时点火(喷气发动机工作)实施变轨进入椭圆轨道,椭圆轨道的近地点为A,远地点为B。在卫星沿椭圆轨道运动经过B点再次点火实施变轨,将卫星送入同步轨道(远地点B在同步轨道上),如图所示。两次点火过程都是使卫星沿切向方向加速,并且点火时间很短。已知同步卫星的运动周期为T,地球的半径为R,地球表面重力加速度为g,求
(1)地球的第一宇宙速度;
(2)卫星在圆形轨道运行接近A点时的加速度大小;
(3)卫星同步轨道距地面的高度。
如图,水平桌面上固定一光滑U型金属导轨,其平行部分的间距为 ,导轨的最右端与桌子右边缘对齐,导轨的电阻忽略不计。导轨所在区域有方向竖直向上的匀强磁场,磁感应强度大小为 。一质量为 、电阻为 、长度也为 的金属棒P静止在导轨上。导轨上质量为 的绝缘棒Q位于P的左侧,以大小为 的速度向P运动并与P发生弹性碰撞,碰撞时间很短。碰撞一次后,P和Q先后从导轨的最右端滑出导轨,并落在地面上同一地点。P在导轨上运动时,两端与导轨接触良好,P与Q始终平行。不计空气阻力。求
(1)金属棒P滑出导轨时的速度大小;
(2)金属体P在导轨上运动过程中产生的热量;
(3)与P碰撞后,绝缘棒Q在导轨上运动的时间。
如图,光滑水平桌面上有一轻质弹黄,其一端固定在墙上。用质量为m的小球压弹簧的另一端,使弹簧的弹性势能为 。释放后,小球在弹簧作用下从静止开始在桌面上运动,与弹簧分离后,从桌面水平飞出。小球与水平地面碰撞后瞬间,其平行于地面的速度分量与碰撞前瞬间相等;垂直于地面的速度分量大小变为碰撞前瞬间的 。小球与地而碰撞后,弹起的最大高度为h。重力加速度大小为g,忽略空气阻力。求
(1)小球离开桌面时的速度大小;
(2)小球第一次落地点距桌面上其飞出点的水平距离。
如图为某药品自动传送系统的示意图.该系统由水平传送带、竖直螺旋滑槽和与滑槽平滑连接的平台组成,滑槽高为 ,平台高为 。药品盒A、B依次被轻放在以速度 匀速运动的传送带上,在与传送带达到共速后,从 点进入滑槽,A刚好滑到平台最右端 点停下,随后滑下的B以 的速度与A发生正碰,碰撞时间极短,碰撞后A、B恰好落在桌面上圆盘内直径的两端。已知A、B的质量分别为 和 ,碰撞过程中损失的能量为碰撞前瞬间总动能的 。 与传送带间的动摩擦因数为 ,重力加速度为g,AB在滑至N点之前不发生碰撞,忽略空气阻力和圆盘的高度,将药品盒视为质点。求:
(1)A在传送带上由静止加速到与传送带共速所用的时间 ;
(2)B从 点滑至 点的过程中克服阻力做的功 ;
(3)圆盘的圆心到平台右端 点的水平距离 .
光滑绝缘的水平面上有垂直平面的匀强磁场,磁场被分成区域Ⅰ和Ⅱ,宽度均为 ,其俯视图如图(a)所示,两磁场磁感应强度随时间 的变化如图(b)所示, 时间内,两区域磁场恒定,方向相反,磁感应强度大小分别为 和 ,一电阻为 ,边长为 的刚性正方形金属框 ,平放在水平面上, 边与磁场边界平行. 时,线框 边刚好跨过区域Ⅰ的左边界以速度 向右运动.在 时刻, 边运动到距区域Ⅰ的左边界 处,线框的速度近似为零,此时线框被固定,如图(a)中的虚线框所示。随后在 时间内,Ⅰ区磁感应强度线性减小到0,Ⅱ区磁场保持不变; 时间内,Ⅱ区磁感应强度也线性减小到0。求:
(1) 时线框所受的安培力 ;
(2) 时穿过线框的磁通量 ;
(3) 时间内,线框中产生的热量 。
在驻波声场作用下,水中小气泡周围液体的压强会发生周期性变化,使小气泡周期性膨胀和收缩,气泡内气体可视为质量不变的理想气体,其膨胀和收缩过程可简化为如图所示的 图像,气泡内气体先从压强为 、体积为 、温度为 的状态 等温膨胀到体积为 、压强为 的状态 ,然后从状态 绝热收缩到体积为 、压强为 、温度为 的状态 到 过程中外界对气体做功为 .已知 和 .求:
(1) 的表达式;
(2) 的表达式;
(3) 到 过程,气泡内气体的内能变化了多少?