(本小题满分12分)
以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X表示.
(Ⅰ)如果X=8,求乙组同学植树棵数的平均数和方差;
(Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.
(注:方差其中
为
的平均数)
设函数
(1)当时,求
的最大值;
(2)令,以其图象上任意一点
为切点的切线的斜率
恒成立,求实数
的取值范围;
(3)当时,方程
有唯一实数解,求正数
的值.
如图1,在直角梯形中,
,
,且
.
现以为一边向形外作正方形
,然后沿边
将正方形
翻折,使平面
与平面
垂直,
为
的中点,如图2.
(1)求证:∥平面
;
(2)求证:平面
;
(3)求点到平面
的距离.
图图
已知数列{}满足
,且
(1)求证:数列{}是等差数列;
(2)求数列{}的通项公式;
(3)设数列{}的前
项之和
,求证:
.
第届亚运会于
年
月
日至
日在中国广州进行,为了做好接待工作,组委会招募了
名男志愿者和
名女志愿者,调查发现,男、女志愿者中分别有
人和
人喜爱运动,其余不喜爱.
(1)根据以上数据完成以下列联表:
喜爱运动 |
不喜爱运动 |
总计 |
|
男 |
10 |
16 |
|
女 |
6 |
14 |
|
总计 |
30 |
(2)能否在犯错误的概率不超过的前提下认为性别与喜爱运动有关?
(3)如果从喜欢运动的女志愿者中(其中恰有人会外语),抽取
名负责翻译工作,则抽出的志愿者中
人都能胜任翻译工作的概率是多少?
附:K2=
P(K2≥k) |
0.100 |
0.050 |
0.025 |
0.010 |
0.001 |
k |
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
已知、
、
为
的三个内角,且其对边分别为
、
、
,若
.
(1)求;
(2)若,求
的面积.