(本小题满分14分)如图,在四棱锥P—ABCD中,底面ABCD是矩形PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.(Ⅰ)证明:EF∥平面PAD;(Ⅱ)求三棱锥E—ABC的体积V.
求证:.
已知直线过定点与圆:相交于、两点. 求:(1)若,求直线的方程; (2)若点为弦的中点,求弦的方程.
已知中,(为变数), 求面积的最大值
已知:在Rt⊿ABC中,∠ACB=90°, 求证:AC2+BC2=AB2..
如图,在中,,是边上的高,是边上的一个动点(不与重合),,,垂足分别为. (1)求证:; (2)与是否垂直?若垂直,请给出证明;若不垂直,请说明理由; (3)当时,为等腰直角三角形吗?并说明理由.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号