若一次函数(
是常数)与
(
是常数),满足
且
,则称这两函数是对称函数
当函数
与
是对称函数,求
和
的值;
在平面直角坐标系中,一次函数
图象与
轴交于点
、与
轴交于点
,点
与点
关于x轴对称,过点
、
的直线解析式是
,求证:函数
与
是对称函数
如图①,为⊙
的直径,
与⊙
相切于点
,
与⊙
相切于点
,点
为
延长线上一点,且CE=CB.
(1)求证:为⊙
的切线;
(2)如图②,连接AE,AE的延长线与BC的延长线交于点G.若,求线段BC和EG的长.
某学生参加社会实践活动,在景点P处测得景点B位于南偏东方向,然后沿北偏东
方向走100米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与景点B之的距离.
如图,⊙O的直径AB长为6,弦AC长为2,∠ACB的平分线交⊙O于点D,求四边形ADBC的面积.
如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E.
(1)求证:△ABD∽△CED;
(2)若AB=6,AD=2CD,求BE的长.
已知反比例函数y=的图象与二次函数y=ax2+x-1的图象相交于点A(2,2)
(1)求a的值;
(2)反比例函数的图象是否经过二次函数图象的顶点,请说明理由.