(本小题满分9分)如图,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、 l1于点D、E(点A、E位于点B的两侧),满足BP=BE,连结AP、CE.
(1)求证:△ABP≌△CBE;
(2)连结AD、BD,BD与AP相交于点F,如图,
①当时,求证:AP⊥BD;
②(n>1)时,设△PAD的面积为S1,△PCE的面积为S2,求
的值.
如图,在四边形 ABCD中,∠ B=∠ C=90°, AB> CD, AD= AB+ CD.
(1)利用尺规作∠ ADC的平分线 DE,交 BC于点 E,连接 AE(保留作图痕迹,不写作法);
(2)在(1)的条件下,
①证明: AE⊥ DE;
②若 CD=2, AB=4,点 M, N分别是 AE, AB上的动点,求 BM+ MN的最小值.
设 P( x,0)是 x轴上的一个动点,它与原点的距离为 y 1.
(1)求 y 1关于 x的函数解析式,并画出这个函数的图象;
(2)若反比例函数 y 2= 的图象与函数 y 1的图象相交于点 A,且点 A的纵坐标为2.
①求 k的值;
②结合图象,当 y 1> y 2时,写出 x的取值范围.
友谊商店 A型号笔记本电脑的售价是 a元/台.最近,该商店对 A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买 A型号笔记本电脑 x台.
(1)当 x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?
(2)若该公司采用方案二购买更合算,求 x的取值范围.
随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.
(1)这组数据的中位数是 ,众数是 ;
(2)计算这10位居民一周内使用共享单车的平均次数;
(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.
已知 T= .
(1)化简 T;
(2)若正方形 ABCD的边长为 a,且它的面积为9,求 T的值.