在等差数列 和等比数列 中, , , 的前10项和 .
(Ⅰ)求
和
;
(Ⅱ)现分别从
和
的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率
已知函数
(1)求在点
处的切线方程;
(2)若存在,使
成立,求
的取值范围;
(3)当时,
恒成立,求
的取值范围.
已知数列的前
项和
和通项
满足
数列
中,
(1)求数列,
的通项公式;
(2)数列满足
是否存在正整数
,使得
时
恒成立?若存在,求
的最小值;若不存在,试说明理由.
如图,为圆
的直径,点
、
在圆
上,
,矩形
所在的平面和圆
所在的平面互相垂直,且
,
.
(1)设的中点为
,求证:
平面
;
(2)设平面将几何体
分成的两个锥体的体积分别为
,
,求
.
已知等差数列的前
项和为
,
(1)求数列的通项公式
与前
项和
;
(2)设求证:数列
中任意不同的三项都不可能成为等比数列.
在三角形ABC中,已知内角A、B、C所对的边分别为a、b、c,已知
且
(1)求角B的大小及的取值范围;
(2)若=
求
的面积.