游客
题文

已知:如图(1),在平行四边形ABCD中,对角线CA⊥BA,AB=AC=8cm,四边形A1B1C1D1是平行四边形ABCD绕点A按逆时针方向旋转45°得到的,A1D1经过点C,B1C1分别与AB、BC相交于点P、Q.
(1)求四边形CD1C1Q的周长;(保留无理数,下同)
(2)求两个平行四边形重合部分的四边形APQC的面积S;
(3)如图(2),将平行四边形A1B1C1D1以每秒1cm的速度向右匀速运动,当运动到B1C1在直线AC上时停止运动.设运动的时间为x(秒),两个平行四边形重合部分的面积为y(cm2).求y关于x的函数关系式,并探索是否存在一个时刻x,使得y取最大值,若存在,请你求出这个最大值;若不存在,请你说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 圆内接四边形的性质 应用类问题
登录免费查看答案和解析
相关试题

直线y=x+2与x轴、y轴分别交于A、B两点,D是x轴上一点,坐标为(x,0),△ABD的面积为S.
(1)求点A和点B的坐标;
(2)求S与x的函数关系式;
(3)当S=12时,求点D的坐标.

下面的表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题

(1)李刚同学6次成绩的极差是     
(2)李刚同学6次成绩的中位数是     
(3)李刚同学平时成绩的平均数是     
(4)利用图的权重计算一下李刚本学期的综合成绩(平时成绩用四次成绩的平均数写出解题过程,每次考试满分都是100分)

已知圆O的直径AB、CD互相垂直,弦AE交CD于F,若圆O的半径为R.
求证:AE·AF=2 R.

如图,有一长方形的地,长为x米,宽为120米,建筑商将它分成三部分:甲、乙、丙.甲和乙为正方形.现计划甲建设住宅区,乙建设商场,丙开辟成公司.若已知丙地的面积为3200平方米,试求x的值.

人在运动时的心跳速率通常和人的年龄有关.如果用a表示一个人的年龄,用b表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220-a).
(1)正常情况下,在运动时一个14岁的少年所能承受的每分钟心跳的最高次数是多少?
(2)一个45岁的人运动时10秒心跳的次数为22次,请问他有危险吗?为什么?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号