乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换。每次发球,胜方得1分,负方得0分。设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立。甲、乙的一局比赛中,甲先发球。
(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;
(Ⅱ)
表示开始第4次发球时乙的得分,求
的期望。
已知椭圆的中心在坐标原点,焦点在
轴上,离心率为
,椭圆
上的点到焦点距离的最大值为
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若过点的直线
与椭圆
交于不同的两点
,且
,求实数
的取值范围.
已知函数,且
.
(Ⅰ)求的值;
(Ⅱ)求函数的单调区间;
(Ⅲ)设函数,若函数
在
上单调递增,求实数
的取值范围.
某高校在2011年的自主招生考试成绩
中随机抽取100名学生的笔试成绩,按成绩
分组:第1组[75,80),第2组[80,85),
第3组[85,90),第4组[90,95),第5组
[95,100]得到的频率分布直方图如图所示.
(Ⅰ)分别求第3,4,5组的频率;
(Ⅱ)若该校决定在笔试成绩高的第3,4,5组
中用分层抽样抽取6名学生进入第二轮面
试,求第3,4,5组每组各抽取多少名学生进入第二轮面试?
(Ⅲ)在(Ⅱ)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有一名学生被甲考官面试的概率.
已知四棱锥的底面是菱形.
,
为
的中点.
(Ⅰ)求证:∥平面
;
(Ⅱ)求证:平面平面
.
在△中,角
,
,
的对边分别为
,
,
.
,
.
(Ⅰ)求证:;
(Ⅱ)若△的面积
,求
的值.