如图,在四棱锥 P - A B C D 中,底面 A B C D 是矩形, A D ⊥ P D , B C = 1 , P C = 2 3 , P D = C D = 2 . (1)求异面直线 P A 与 B C 所成角的正切值; (2)证明平面 P D C ⊥ 平面 A B C D
(3)求直线 P B 与平面 A B C D 所成角的正弦值。
已知,,为正实数,若,求证:.
在直角坐标系中,参数方程为的直线,被以原点为极点,轴的正半轴为极轴,极坐标方程为的曲线所截,求截得的弦长.
变换是逆时针旋转的旋转变换,对应的变换矩阵是;变换对应用的变换矩阵是. (Ⅰ)求点在作用下的点的坐标; (Ⅱ)求函数的图象依次在,变换的作用下所得曲线的方程.
在△ABC中,已知CM是∠ACB的平分线,△AMC的外接圆交BC于点N,且BN2AM. 求证:ABAC.
已知是正数, ,,. (1)若成等差数列,比较与的大小; (2)若,则三个数中,哪个数最大,请说明理由; (3)若,,(),且,,的整数部分分别是求所有的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号