游客
题文

计算题:
(1)    
(2)

科目 数学   题型 解答题   难度 较易
知识点: 二元二次方程组
登录免费查看答案和解析
相关试题

如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).

(1)求抛物线的解析式;
(2)设直线l与y轴交于点D,抛物线交y轴于点E,则△DBE的面积是多少?

计算已知a=,b=,c=-,d=,e=,请你列式表示上述5个数中“无理数的和”与“有理数的积”的差,并计算结果。

如图,对称轴为x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(-3,0).

(1)求点B的坐标.
(2)已知a=1,C为抛物线与y轴的交点.
①若点P在抛物线上,且SPOC=4SBOC,求点P的坐标.
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.

已知A=, B=, C=
(1)求证:无论为何值,A-B<0成立,并指出A,B的大小关系
(2)请分析A与C的大小关系

某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题
(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;
(2)若降价的最小单位为1元,则当降价多少元时,每星期的利润最大?最大利润是多少?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号