已知数列是等比数列,首项
(Ⅰ)求数列的通项公式(Ⅱ)若数列
是等差数列,且
,求数列
的通项公式及前
项的和
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。
求证:PC⊥BC;
求点A到平面PBC的距离。
如图,四棱锥S-ABCD中,SD底面ABCD,AB//DC,AD
DC,
AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC平面SBC .
(Ⅰ)证明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大小 .
已知三棱锥P—ABC中,PC⊥底面ABC,,
,二面角P-AB-C为
,D、F分别为AC、PC的中点,DE⊥AP于E.
(Ⅰ)求证:AP⊥平面BDE;
(Ⅱ)求直线EB与平面PAC所成的角。
已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=½AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
如图所示,在正三棱柱中,底面边长为
,侧棱长为
,
是棱
的中点.
|
(Ⅰ)求证:平面
;