《中华人民共和国道路交通管理条例》规定:小汽车在城市街道上行驶速度不得超过千米/小时,如图,一辆小汽车在一条城市街道上直道行驶,某一时刻刚好行驶到路对面车速检测仪
正前方
米点
处,过了
秒后,小汽车在点
处测得与车速检测仪
间距离为
米,问:这辆小汽车超速了吗?
有一个均匀的正六面体,六个面上分别标有数字1,2,3,4,5,6,随机地抛掷一次,把朝上一面的数字记为x;另有三张背面完全相同,正面分布写有数字﹣2,﹣1,1的卡片,将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y;然后计算出S=x+y的值.
(1)用树状图或列表法表示出S的所有可能情况;
(2)求出当S<2时的概率.
解不等式组.
解方程:.
如图,已知抛物线过点A(0,6),B(2,0),C(7,
).
(1)求抛物线的解析式;
(2)若D是抛物线的顶点,E是抛物线的对称轴与直线AC的交点,F与E关于D对称,求证:∠CFE=∠AFE;
(3)在y轴上是否存在这样的点P,使△AFP与△FDC相似,若有请求出所有和条件的点P的坐标,若没有,请说明理由.
已知△ABC,分别以AC和BC为直径作半圆O1,O2,P是AB的中点,
(1)如图1,若△ABC是等腰三角形,且AC=BC,在,
上分别取点E、F,使∠AO1E=∠BO2F
,则有结论①△PO1E≌△FO2P,②四边形PO1CO2是菱形,请给出结论②的证明;
(2)如图2,若(1)中△ABC是任意三角形,其他条件不变,则(1)中的两个结论还成立吗?若成立,请给出证明;
(3)如图3,若PC是⊙O1的切线,求证:AB2=BC2+3AC2.