游客
题文

某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品。从两个分厂生产的零件中各抽出500件,量其内径尺寸,的结果如下表:
甲厂:

(1)  试分别估计两个分厂生产的零件的优质品率;
(2)  由于以上统计数据填下面列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”。

 
甲 厂
   乙 厂
 合计
优质品
 
 
 
 非优质品
 
 
 
  合计
 
 
 

附:  .

科目 数学   题型 解答题   难度 容易
知识点: 变量间的相关关系
登录免费查看答案和解析
相关试题

(本小题满分14分)
已知函数的图象在上连续不断,定义:


其中,表示函数上的最小值,表示函数上的最大值.若存在最小正整数,使得对任意的成立,则称函数上的“收缩函数”.
(Ⅰ)若,试写出的表达式;
(Ⅱ)已知函数,试判断是否为上的“阶收缩函数”,如果是,求出对应的;如果不是,请说明理由;
(Ⅲ)已知,函数上的2阶收缩函数,求的取值范围.

(本小题满分13分)
已知椭圆和抛物线有公共焦点F(1,0), 的中心和的顶点都在坐标原点,过点M(4,0)的直线与抛物线分别相交于A,B两点.
(Ⅰ)写出抛物线的标准方程;
(Ⅱ)若,求直线的方程;
(Ⅲ)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值.

(本小题满分13分)
已知函数,其中a为常数,且.
(Ⅰ)若,求函数的极值点;
(Ⅱ)若函数在区间上单调递减,求实数a的取值范围.

(本小题满分13分)
为保护水资源,宣传节约用水,某校4名志愿者准备去附近的甲、乙、丙三家公园进行宣传活动,每名志愿者都可以从三家公园中随机选择一家,且每人的选择相互独立.
(Ⅰ)求4人恰好选择了同一家公园的概率;
(Ⅱ)设选择甲公园的志愿者的人数为,试求的分布列及期望.

(本小题满分14分)
已知四棱锥,底面为矩形,侧棱,其中为侧棱上的两个三等分点,如图所示.

(Ⅰ)求证:
(Ⅱ)求异面直线所成角的余弦值;
(Ⅲ)求二面角的余弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号