游客
题文

初中生对待学习的态度一直是教育工作者关注的问题之一.为此韶山市教育局对我市部分学校的九年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了       名学生;
(2)将图①补充完整;
(3)求出图②中C级所占的圆心角的度数
(4)根据抽样调查结果,请你估计我市近1000名九年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?
                                                                             

科目 数学   题型 解答题   难度 中等
知识点: 统计量的选择
登录免费查看答案和解析
相关试题

已知二次函数的图象是由函数的图象向左平移一个单位得到.反比例函数与二次函数的图象交于点A(1,n).
(1)求a,p,q,m,n的值;
(2)要使反比例函数和二次函数在直线的一侧都是y随着x的增大而减小,求t的最大值;
(3)记二次函数图象的顶点为B,以AB为边构造矩形ABCD,边CD与函数相交,且直线AB与CD的距离为,求出点D,C的坐标.

如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).

(1)直接用含t的代数式分别表示:QB=,PD=
(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;
(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.

当a>0且x>0时,因为,所以,从而(当x=时取等号).记函数,由上述结论可知:当x=时,该函数有最小值为2
(1)已知函数y1=x(x>0)与函数,则当x=时,y1+y2取得最小值为
(2)已知函数y1=x+1(x>-1)与函数y2=(x+1)2+4(x>−1),求的最小值,并指出取得该最小值时相应的x的值.

如图,在扇形OAB中,∠AOB=90°,半径OA=6.将扇形OAB沿过点B的直线折叠。点O恰好落在弧AB上点D处,折痕交OA于点C,求整个阴影部分的周长和面积。

如图是一个圆锥与其侧面展开图,已知圆锥的底面半径是2,母线长是6.

(1)求这个圆锥的高和其侧面展开图中∠ABC的度数;
(2)如果A是底面圆周上一点,从点A拉一根绳子绕圆锥侧面一圈再回到A点,求这根绳子的最短长度.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号