如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点, PO的延长线交BC于Q.
(1)求证:△ P O D ≌ △Q O B ;
(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形P B Q D是菱形.
如图,在中,
,
平分
交
于
,点
在
上,以
为半径的圆,交
于
,交
于
,且点
在⊙
上,连结
,切⊙
于点
。
(1)求证
;
(2)若
,求⊙
的半径;
已知一元二次方程(1)若
,求该方程的根;
(2)若
,判断该方程的根的情况;
(3)若
是该方程的两个根,且
,求证
。
如图,内接于⊙
,点
在
的延长线上,
(1)求证直线
是⊙
的切线;
(2)若
,求
的长。
如图,有一块矩形铁皮,长,宽
,在他的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。如果要制作的无盖方盒的底面积为
,那么铁皮各角应切去边长为多大的正方形?
已知在正方形网格上建立的平面直角坐标系中,的位置如图所示
(1)将
绕点
顺时针方向旋转
后得
①直接写出点的对应点
的坐标;
②求点旋转到点
所经过的路线长(结果保留
)
(2)在正方形网格中,每个小正方形的顶点称为格点,在图中确定格点
,并画出以
为顶点的四边形,使其为中心对称图形(画一个即可)。