如图1,l1,l2,l3,l4是一组平行线,相邻2条平行线间的距离都是1个单位长度,正方形ABCD的4个顶点A,B,C,D都在这些平行线上.过点A作AF⊥l3于点F,交l2于点H,过点C作CE⊥l2于点E,交l3于点G.
(1)求证:△ADF≌△CBE;
(2)求正方形ABCD的面积;
(3)如图2,如果四条平行线不等距,相邻的两条平行线间的距离依次为h1,h2,h3,试用h1,h2,h3
表示正方形ABCD的面积S.
已知,△ABC为等边三角形,点D为直线AB上一动点(点D不与A、B重合).以CD为边作菱形CDEF,使∠DCF=60°,连接AF.
(1)如图1,当点D在边AB上时,
①求证:∠BDC=∠AFC;
②请直接判断结论∠AFC=∠BAC+∠ACD是否成立?
(2)如图2,当点D在边BA的延长线上时,其他条件不变,结论∠AFC=∠BAC+∠ACD是否成立?请写出∠AFC、∠BAC、∠ACD之间存在的数量关系,并写出证明过程;
(3)如图3,当点D在边AB的延长线上时,且点C、F分别在直线AB的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠BAC、∠ACD之间存在的等量关系.
已知关于的一元二次方程
有两个实数根
和
.
(1)求实数的取值范围;
(2)当时,求
的值.
若最简二次根式是同类二次根式.
(1)求的值;
(2)求的值.
如图,要设计一个矩形的花坛,花坛长60 m,宽40 m,有两条纵向甬道和一条横向甬道,横向甬道的两侧有两个半圆环形甬道,半圆环形甬道的内半圆的半径为10 m,横向甬道的宽度是其它各甬道宽度的2倍.设横向甬道的宽为2x m.(π的值取3)
(1)用含x的式子表示两个半圆环形甬道的面积之和;
(2)当所有甬道的面积之和比矩形面积的多36 m2时,求x的值.
有四张背面相同的纸牌,其正面分别画有四个不同的几何图形(如图).小明将这4张纸牌背面朝上洗匀后摸出一张,将剩余3张洗匀后再摸出一张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用表示);
(2)求摸出的两张牌面图形既是轴对称图形又是中心对称图形纸牌的概率.