为了了解学生参加家务劳动的情况,某中学随机抽取部分学生,统计他们双休日两天家务劳动的时间,将统计的劳动时间(单位:分钟)分成5组:30≤x<60、60≤x<90、90≤x<120、120≤x<150、150≤x<180,绘制成频数分布直方图.
请根据图中提供的信息,解答下列问题:
(1)这次抽样调查的样本容量是 ;
(2)根据小组60≤x<90的组中值75,估计该组中所有数据的和为 ;
(3)该中学共有1000名学生,估计双休日两天有多少学生家务劳动的时间不少于90分钟?
(1)解不等式:2(x-3)-2≤0;
(2)解方程组:
计算:
(1)(-5)0-()2+|-3|;
(2)(x+1)2-2(x-2).
如图,在菱形ABCD中,E是CD上的一点,连接BE交AC于O,连接DO并延长交BC于E。
(1)求证:△FOC≌△EOC
(2)将此图中的AD、BE分别延长交于点N,作EM∥BC交CN于M,再连接FM即得到图5。
求证:①;②FD=FM
如图,曲线抛物线的一部分,且表达式为:
曲线
与曲线
关于直线
对称。
(1)求A、B、C三点的坐标和曲线的表达式;
(2)过点D作轴交曲线
于点D,连接AD,在曲线
上有一点M,使得四边形ACDM为筝形(如果一个四边形的一条对角线被另一条对角线垂直平分,这样的四边形为筝形),请求出点M的横坐标。
(3)设直线CM与轴交于点N,试问在线段MN下方的曲线
上是否存在一点P,使△PMN的面积最大?若存在,求出点P的坐标;若不存在,请说明理由。
如图3图4,分别是吊车在吊一物品时的实物图与示意图,已知吊车底盘CD的高度为2米,支架BC的长为4米,且与地面成30°角,吊绳AB与支架BC的夹角为80°,吊臂AC与地面成70°角,求吊车的吊臂顶端A点距地面的高度是多少米?(精确到0.1米)?
(参考数据:sin10°=cos80°=0.17,cos10°=sin80°=0.98,sin20°=cos70°=0.34,tan70°=2.75,sin70°=0.94)