联合国规定每年的月日是“世界环境日”,为配合今年的“世界环境日”宣传活动,某校课外活动小组对全校师生开展了以“爱护环境,从我做起”为主题的问卷调查活动,将调查结果分析整理后制成了下面的两个统计图.其中:
A.能将垃圾放到规定的地方,而且还会对垃圾分类。 | B.能将垃圾放到规定地方,但不会考虑垃圾分类。 | C.偶尔会将垃圾放到规定的地方。 | D.随手乱扔垃圾。 根据以上信息回答下列问题: |
(1)该校课外活动小组共调查了多少人?并补全上面的条形统计图;
(2)如果该校共有师生2400人,那么随手乱扔垃圾的约有多少人?
(本小题满分8分)如图,“五·一”期间在某商贸大厦上从点A到点B悬挂了一条宣传条幅,小明和小雯的家正好住在商贸大厦对面的家属楼上,小明在四楼D点测得条幅端点A的仰角为30°,测得条幅端点B的俯角为45°;小雯在三楼C点测得条幅端点A的仰角为45°,测得条幅端点B的俯角为30°.若设楼层高度CD为3米,请你根据小明和小雯测得的数据求出条幅AB的长.(结果精确到个位,参考数据≈1.73)
(本小题满分6分)如图,4张背面完全相同的纸牌(用①、②、③、④表示),在纸牌的正面分别写有四个个不同的条件,小明将这4张纸牌背面朝上洗匀后,先随机摸出一张(不放回),再随机摸出一张.
(1)用列表法(或树状图法)表示两次摸牌出现的所有可能结果(用①、②、③、④表示);
(2)以两次摸出牌上的结果为条件,求能判断四边形ABCD是平行四边形的概率.
(本小题满分5分)如图,四边形ABCD为正方形,利用尺规作图在正方形ABCD内(含边),画出使∠APB=60°的所有的点构成的图形.(要求:不写作法,保留作图痕迹,写出结论)
(本小题满分10分,每小题5分)
(1)计算:;
(2)解方程:+3x-1=0.
已知:如图,点A(3,4)在直线y=kx上,过A作AB⊥x轴于点B.
(1)求k的值;
(2)设点B关于直线y=kx的对称点为C点,求ΔABC外接圆的面积;
(3)抛物线y=-1与x轴的交点为Q,试问在直线y=kx上是否存在点P,使得∠CPQ=∠OAB,如果存在,请求出P点的坐标;如果不存在,请说明理由.