如图, 已知直线分别与
轴,
轴交于
两点, 点
在
轴上. 以点
为圆心的⊙
与直线
相切于点
, 连接
.
(1) 求证: ∽
;
(2)如果⊙的半径为
, 求出点
的坐标, 并写出以
为顶点, 且过点
的抛物线的解析式;
(3) 在(2)的条件下, 在此抛物线上是否存在点, 使得以
三点为顶点的三角形与
相似? 如果存在, 请求出所有符合条件的点
的坐标; 如果不存在, 请说明理由.
已知:,求代数式
的值.
如图,在△中,
,
于
,点
在线段
上,
,点
在线段
上,请你从以下两个条件中选择一个作为条件,证明△
≌△
.
(1)∥
;
(2).
.
已知:如图,抛物线与
轴交于点
,与
轴交于
、
两点,点
的坐标为
.
(1)求抛物线的解析式及顶点的坐标;
(2)设点是在第一象限内抛物线上的一个动点,求使与四边形
面积相等的四边形
的点
的坐标;
(3)求的面积.
已知:如图,等边△ABC中,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.
(1)猜想:线段AE、MD之间有怎样的数量关系,并加以证明;
(2)在(1)的条件下延长BM到P,使MP=BM,连接CP,若AB=7,AE=
,
求tan∠BCP的值.