某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:
|
积极参加班级工作 |
不太主动参加班级工作 |
合计 |
学习积极性高 |
18 |
7 |
25 |
学习积极性一般 |
6 |
19 |
25 |
合计 |
24 |
26 |
50 |
(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(2)试运用独立性检验:能否在犯错误的概率不超过0.01的前提下认为学生的学习积极性与对待班级工作的态度有关系?并说明理由. 附:
(参考下表)
P(K2≥k) |
0.50 |
0.40 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
k |
0.455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
已知向量,
,( 其中
),当
时,
;当
时,
。
(1)求函数式;
(2)求函数的单调递减区间;
(3)若对,都有
,求实数
的取值范围
已知函数,
,
(Ⅰ)若函数的图像恒在直线
的上方,试求
的取值集合;
(Ⅱ)解关于 的不等式:
。
某小区要建一个面积为500平方米的矩形绿地(如图中的阴影部分),四周有小路,绿地长边外路宽5米,短边外路宽9米,怎样设计绿地的长与宽,使绿地和小路所占的总面积最小,并求出最小值
已知数列 ,其中
是首项为1,公差为1的等差数列;
是公差为
的等差数列;
是公差为
的等差数列(
).
(1)若 ,求
;
(2)试写出 关于
的关系式;
(3)续写已知数列,使得 是公差为
的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题,并进行研究,你能得到什么样的结论?
在复平面上,设点A、B、C 对应的复数分别为 。过A、B、C 三个点做平行四边形。 求第四个顶点D的坐标及此平行四边形的对角线的长。