如图所示,竖直光滑直轨道OA高度为2R,连接半径为R的半圆形光滑环形管道ABC(B为最低点),其后连接圆弧环形粗糙管道CD,半径也为R.一个质量为m的小球从O点由静止释放,自由下落至A点进入环形轨道,从D点水平飞出,下落高度刚好为R时,垂直落在倾角为30°的斜面上P点,不计空气阻力,重力加速度为g.求:
(1)小球运动到B点时对轨道的压力大小;
(2)小球运动到D点时的速度大小;
(3)小球在环形轨道中运动时,摩擦力对小球做了多少功?
如图所示,质量均为m的A、B两个弹性小球,用长为2l不可伸长的轻绳连接,现把AB两球置于距地面高H处(H足够大)间距为l,当A球自由下落的同时,B球以速度v0指向A球水平抛出,求:
(1)两球从开始运动到相碰,A球下落的高度;
(2)A、B两球碰撞(碰撞时无机械能损失)后,各自速度的水平分量;
(3)轻绳拉直过程中,B球受到绳子拉力冲量的大小.
柴油打桩机的重锤由汽缸、活塞等若干部件组成,汽缸与活塞间有柴油与空气的混合物,在重锤与桩碰撞的过程中,通过压缩使混合物燃烧,产生高温高压气体,从而使桩向下运动,锤向上运动,现把柴油打桩机和打桩过程简化如下:
柴油打桩机重锤的质量为m,锤在桩帽以上高度为h处(如图a)从静止开始沿竖直轨道自由落下,打在质量为M(包括桩帽)的钢筋混凝土桩子上.同时,柴油燃烧,产生猛烈推力,锤和桩分离,这一过程的时间极短.随后,桩在泥土中向下移动一距离l.已知锤反跳后到达最高点时,锤与已停下的桩帽之间的距离也为h(如图b).已知m=1.0×103 kg,M=2.0×103 kg,h="2.0" m,l="0.20" m,重力加速度g="10" m/s2,混合物的质量不计.设桩向下移动的过程中泥土对桩的作用力F是恒力,求此力的大小.
如图所示,长木板ab的b端固定一挡板,木板连同挡板的质量为M="4.0" kg,a、b间距离s="2.0" m.木板位于光滑水平面上.在木板a端有一小物块,其质量m="1.0" kg,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态.现令小物块以初速v0="4.0" m/s沿木板向前滑动,直到和挡板相撞.碰撞后,小物块恰好回到a端而不脱离木板.求碰撞过程中损失的机械能.
如图所示的三个小球的质量都为m,B、C两球用轻弹簧连接后放在光滑的水平面上,A球以速度v0沿B、C两球球心的连线向B球运动,碰后A、B两球粘在一起,问:
(1)A、B两球刚刚粘合在一起时的速度是多大?
(2)三球的速度达到相同时的共同速度是多大?
如图所示,质量为m的子弹,以速度v水平射入用轻绳悬挂在空中的木块,木块的质量为M,绳长为L,子弹停留在木块中,求子弹射入木块后的瞬间绳子中的张力的大小?