在某个半径为的行星表面,对于一个质量
kg的砝码,用弹簧称量,其重力的大小
。则:
①请您计算该星球的第一宇宙速度是多大?
②请计算该星球的平均密度。(球体积公式,
,结果保留两位有效数字)
如图所示,B是质量为2m、半径为R的光滑半球形碗,放在光滑的水平桌面上。A是质量为m的细长直杆,光滑套管D被固定在竖直方向,A可以自由上下运动,物块C的质量为m,紧靠半球形碗放置。初始时,A杆被握住,使其下端正好与碗的半球面的上边缘接触(如图)。然后从静止开始释放A,A、B、C便开始运动。求:
(1)长直杆的下端运动到碗的最低点时,长直杆竖直方向的速度和B、C水平方向的速度;
(2)运动的过程中,长直杆的下端能上升到的最高点距离半球形碗底部的高度。
如图所示,ef、gh为水平放置的足够长的平行光滑导轨,导轨间距为L=1m,导轨左端连接一个R=2Ω的电阻,将一根质量为0.2kg的金属棒cd垂直地放置导轨上,且与导轨接触良好,导轨与金属棒的电阻均不计,整个装置放在磁感应强度为B=2T的匀强磁场中,磁场方向垂直导轨平面向下,现对金属棒施加一水平向右的拉力F,使棒从静止开始向右运动,解答以下问题。
(1)若施加的水平外力恒为F=8N,则金属棒达到的稳定速度ν1是多少?
(2)若施加的水平外力的功率恒为P=18W,则金属棒达到的稳定速度ν2是多少?
(3)若施加的水平外力的功率恒为P=18W,则从金属棒开始运动到速度 v3=2m/s的过程中电阻R产生的热量为8.6J,则该过程中所需的时间是多少?
如图所示,一矩形线圈在匀强磁场中绕OO′轴匀速转动,磁场方向与转轴垂直.线圈匝数n=40,电阻r=0.1 Ω,长l1=0.05 m,宽l2=0.04 m,角速度ω=100 rad/s,磁场的磁感应强度B=0.2 T.线圈两端外接电阻R=9.9 Ω的用电器和一个交流电流表.求:
(1)线圈中产生的最大感应电动势;
(2)电流表的读数;
(3)用电器上消耗的电功率.
如图所示,长为L=9m的传送带与水平方向的倾角θ=37°,在电动机的带动下以v=4m/s的速率沿顺时针方向运行,在传送带的B端有一离传送带很近的挡板P可将传送带上的物体挡住,在传送带的A端无初速度地释放一质量m=1Kg的物体,它与传送带之间的动摩擦因数为0.5,物体与挡板碰撞时的能量损失及碰撞时间均不计。(sin37°=0.6,cos37°=0.8)
①在物体从第一次由静止开始下滑到与挡板P第一次相碰后,物体再次上升到最高点的过程中,由于摩擦而产生的热量为多少?
②试求物体最终的运动状态以及达到该运动状态后电动机的输出功率P。
如图甲所示,边长为L的正方形区域ABCD内有竖直向下的匀强电场,电场强度为E,与区域边界BC相距L处竖直放置足够大的荧光屏,荧光屏与AB延长线交于O点.现有一质量为m,电荷量为+q的粒子从A点沿AB方向以一定的初速度进入电场,恰好从BC边的中点P飞出,不计粒子重力.
(1)求粒子进入电场前的初速度的大小.
(2)其他条件不变,增大电场强度使粒子恰好能从CD边的中点Q飞出,求粒子从Q点飞出时的动能.
(3)现将原来电场分成AEFD和EBCF相同的两部分,并将EBCF向右平移一段距离x(x≤L),如图乙所示.设粒子打在荧光屏上位置与O点相距y,请求出y与x的关系.