某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示.
(1)求y关于x的函数解析式,并写出它的定义域;
(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.
(注:总成本=每吨的成本×生产数量)
在矩形中,
,
.分别以
所在直线为
轴和
轴,建立如图所示的平面直角坐标系.
是边
上一点,过点
的反比例函数
图象与
边交于点
.
(1)请用k表示点E,F的坐标;
(2)若的面积为
,求反比例函数的解析式.
如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.
实践与操作:
根据要求尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法).
(1)作∠DAC的平分线AM;
(2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE、CF.
猜想并证明:
判断四边形AECF的形状并加以证明.
小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:
服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件。
(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?
(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?
某学校初三年级男生共200人,随机抽取10名测量他们的身高为(单位:cm):
181、176、169、155、163、175、173、167、165、166.
(1)求这10名男生的平均身高和上面这组数据的中位数;
(2)估计该校初三年级男生身高高于170cm的人数;
(3)从身高为181、176、175、173的男生中任选2名,求身高为181cm的男生被抽中的概率.
如图,是一副学生用的三角板,在△ABC 中,∠C=90°, ∠A=60°,∠B=30°;在△中,∠C
=90°, ∠A
=45°,∠B
=45°,且A
B
=" CB" .若将边
与边CA重合,其中点
与点C重合.将三角板
绕点C(
)按逆时针方向旋转,旋转过的角为
,旋转过程中边
与边AB的交点为M, 设AC=
.
(1)计算的长;
(2)当=30°时,证明:
∥AB;
(3)若=
,当
=45°时,计算两个三角板重叠部分图形的面积;
(4)当=60°时,用含
的代数式表示两个三角板重叠部分图形的面积.
(参考数据:°=
,
°=
,
°=
°=
,
°=
,
°=
)