已知椭圆的中心在原点,一个焦点,且长轴长与短轴长的比是.若椭圆在第一象限的一点的横坐标为1,过点作倾斜角互补的两条不同的直线,分别交椭圆于另外两点,.(Ⅰ)求椭圆的方程;(Ⅱ)求证:直线的斜率为定值;(Ⅲ)求面积的最大值.
已知集合,. (1)若,求; (2)若,求实数的取值范围.
已知数列{}满足是数列{}的前n项和. (1)若数列{}为等差数列: ①求数列{}的通项公式; ②若数列满足,数列满足,试比较数列的前n项和与的前n项和的大小; (2)若对任意的恒成立,求实数x的取值范围.
已知以点为圆心的圆经过点和,线段的垂直平分线交圆于点和,且. (1)求直线的方程; (2)求圆的方程; (3)设点在圆上,试问使△的面积等于8的点共有几个?证明你的结论.
如图,四边形为矩形,,,. (1); (2).
和的中点,求: (1) (2)
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号