如图,二次函数的图像交
轴于
,交
轴于
,过
画直线。
(1)求二次函数的解析式;
(2)点在
轴正半轴上,且
,求
的长;
(3)点在二次函数图像上,以
为圆心的圆与直线
相切,切点为
。
① 点在
轴右侧,且
(点
与点
对应),求点
的坐标;
② 若的半径为
,求点
的坐标。
解方程:
化简求值:,其中a=
,b=
.
如图1,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥DC,BC=10cm,CD=6cm.在线段BC、CD上有动点F、E,点F以每秒2cm的速度,在线段BC上从点B向点C匀速运动;同时点E以每秒1cm的速度,在线段CD上从点C向点D匀速运动.当点F到达点C时,点E同时停止运动.设点F运动的时间为t(秒).
(1)求AD的长;
(2)设四边形BFED的面积为y,求y 关于t的函数关系式并写出自变量的取值范围
(3)当t为何的值时,以EE为半径的⊙F与CD边只有一个公共点.
某市水产品市场管理部门规划建造面积为2400m2的集贸大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28m2,月租费为400元;每间B种类型的店面的平均面积为20m2,月租费为360元.全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%.
(1)试确定A种类型店面的数量的范围;
(2)该大棚管理部门通过了解业主的租赁意向得知, A种类型店面的出租率为75%,B种类型店面的出租率为90%.
①开发商计划每年能有28万元的租金收入,你认为这一目标能实现吗?若能应该如何安排A、B两类店面数量?若不能,说明理由。
②为使店面的月租费最高,最高月租金是多少?
阅读理解:如图,已知直线m∥n,A、B 为直线n上两点,C、D为直线m上两点,容易证明:△ABC的面积=△ABD的面积.
根据上述内容解决以下问题:
已知正方形ABCD的边长为4,G是边CD上一点,以CG为边作正方形GCEF.
(1)如图(2), 当点G是CD的中点时,△BDF的面积为.
(2)如图(3), 当CG = a时, 则△BDF的面积为,并说明理由.
探索应用:小张家有一块长方形的土地如图(4),由于修建高速公路被占去一块三角形BCP区域.现决定在DP右侧补给小张一块土地,补偿后,土地变为四边形ABMD,要求补偿后的四边形ABMD的面积与原来形长方形ABCD的面积相等且M在射线BP上,请你在图中画出M点的位置,并简要叙述做法.