如图,在平面直角坐标系中,矩形OABC的顶点A(0,3)、C(-1,0).将矩形OABC绕原点O顺时针方向旋转90o,得到矩形OA′B′C′.设直线BB′与x轴交于点M、与y轴交于点N,抛物线经过点C、M、N.解答下列问题:
(1)求直线BB′的 函数解析式;
(2)求抛物线的解析式;
(3)在抛物线上求出使S△PB′′ C′=S矩形OABC的所有点P的坐标.
如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.
(1)求证:BD平分∠ABC;
(2) 当∠ODB=30°时,求证:BC="OD."
如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(,
)、B(
,1)、C(0,
).
(1) 点B关于坐标原点O对称的点的坐标为__________;
(2) 将△ABC绕点C顺时针旋转,画出旋转后得到的△A1B1C;
(3) 求过点B1的反比例函数的解析式.
某渔船出海捕鱼,2010年平均每次捕鱼量为10吨,2012年平均每次捕鱼量为8.1吨,求2010年至2012年每年平均每次捕鱼量的年平均下降率.
解方程:
如图,在锐角三角形ABC中,BC=10,BC边上的高AM=6,D,E分别是边AB,AC上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点的异侧作正方形DEFG.
(1)因为,所以△ADE∽△ABC.
(2)如图1,当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;
(3)设DE = x,△ABC与正方形DEFG重叠部分的面积为y.
①如图2,当正方形DEFG在△ABC的内部时,求关于
的函数关系式,写出x的取值范围;
②如图3,当正方形DEFG的一部分在△ABC的外部时,求关于
的函数关系式,写出x的取值范围;
③当x为何值时,y有最大值,最大值是多少?