有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字l和2.B布袋中有三个完全相同的小球,分别标有数字-1,-2和-3.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(2)求点Q落在直线y=x-3上的概率.
如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.
(1)求证:∠ABE=∠EAD;
(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.
如图,△ACB和△ECD都是等腰直角三角形,△ACB的顶点A在△ECD的斜边DE的延长线上,求证:
如图,(1)在梯形ABCD中,AB∥DC,若∠A=∠B,求证:AD=BC
(2)写出(1)的逆命题,并证明。
甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路L步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,按原路原速返回,追上小明后两人一起步行到乙地.如图,线段OA表示小明与甲地的距离为y1(米)与行走的时间为x(分钟)之间的函数关系;折线BCDEA表示小亮与甲地的距离为y2(米)与行走的时间为x(分钟)之间的函数关系.请根据图像解答下列问题:
(1)小明步行的速度是米/分钟,小亮骑自行车的速度米/分钟;
(2)图中点F坐标是(,)、点E坐标是(,);
(3)求y1、y2与x之间的函数关系式;
(4)请直接写出小亮从乙地出发再回到乙地过程中,经过几分钟与小明相距300米?
两个全等的直角三角形重叠放在直线上,如图14-1,AB=6cm,BC=8cm,∠ABC=90°,将Rt△ABC在直线上向左平移,使点C从F点向E点移动,如图14-2所示.
(1)求证:四边形ABED是矩形;请说明怎样移动Rt△ABC,使得四边形ABED是正方形?
(2)求证:四边形ACFD是平行四边形;说明如何移动Rt△ABC,使得四边形ACFD为菱形?
(3)若Rt△ABC向左移动的速度是1cm/s,设移动时间为t秒,四边形ABFD的面积为Scm.求s随t变化的函数关系式.