游客
题文

如图,对称轴为直线x=一的抛物线经过点A(-6,0)和点B(0,4).

(1)求抛物线的解析式和顶点坐标;
(2)设点E(x,y)是抛物线上的一个动点,且位于第三象限,四边形OEAF是以OA为对角线的平行四边形,求OEAF的面积S与x的函数关系式,并写出自变量x的取值范围;
①当OEAF的面积为24时,请判断OEAF是否为菱形?
②是否存在点E,使OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

中心为 O 的正六边形 ABCDEF 的半径为 6 cm ,点 P Q 同时分别从 A D 两点出发,以 1 cm / s 的速度沿 AF DC 向终点 F C 运动,连接 PB PE QB QE ,设运动时间为 t ( s )

(1)求证:四边形 PBQE 为平行四边形;

(2)求矩形 PBQE 的面积与正六边形 ABCDEF 的面积之比.

某服装专卖店计划购进 A B 两种型号的精品服装.已知2件 A 型服装和3件 B 型服装共需4600元;1件 A 型服装和2件 B 型服装共需2800元.

(1)求 A B 型服装的单价;

(2)专卖店要购进 A B 两种型号服装60件,其中 A 型件数不少于 B 型件数的2倍,如果 B 型打七五折,那么该专卖店至少需要准备多少货款?

某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成如图所示的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:

(1)在这次调查中,共调查了多少名学生;

(2)补全条形统计图;

(3)若该校爱好运动的学生共有800名,则该校学生总数大约有多少名.

如图, O 的直径 AB 交弦(不是直径) CD 于点 P ,且 P C 2 = PB · PA ,求证: AB CD

甲口袋中装有2个相同小球,它们分别写有数字1,2;乙口袋中装有3个相同小球,它们分别写有数字3,4,5;丙口袋中装有2个相同小球,它们分别写有数字6,7.从三个口袋各随机取出1个小球.用画树状图或列表法求:

(1)取出的3个小球上恰好有一个偶数的概率;

(2)取出的3个小球上全是奇数的概率.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号