教材第66页探索平方差公式时设置了如下情境:边长为b的小正方形纸片放置在边长为a的
大正方形纸片上(如图9−6),你能通过计算未盖住部分的面积得到公式(a + b) (a − b) = a2− b2吗?
(不必证明)
(1)如果将小正方形的一边延长(如图①),是否也能推导公式?请完成证明.
(2) 面积法除了可以帮助我们记忆公式,还可以直观地推导或验证公式,俗称“无字证明”.例如,著名的赵爽弦图(如图②,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2,也可以表示为4´ab + (a − b)2,由此推导出重要的勾股定理:a2 + b2 = c2.
图③为美国第二十任总统伽菲尔德的“总统证法”,请你完成证明.
(3) 试构造一个图形,使它的面积能够解释(a − 2b)2 = a2− 4ab + 4b2,画在下面的格点中,并标出字母a、b所表示的线段.
如图,在四边形ABCD中,∠B=∠D,∠1=∠2,求证:四边形ABCD是平行四边形.
已知函数y与x+1成反比例,且当x=﹣2时,y=﹣3.
(1)求y与x的函数关系式;
(2)当x=时,求y的值.
解方程:
①;
②;
③;
④.
如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO和BC上,PB=PD,DE⊥AC于点E.
(1)若PB平分∠ABO,求证:AP=CD;
(2)若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)
小明和小新同时上学,从家到学校的距离都是2km,他们走路的速度是6km/h,跑步的速度为10km/h,请你根据以上信息,设计一个可以用一元一次不等式解决的问题.并给出解决方案.